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Abstract. The quantum dynamics of a parametric interaction of the electromagnetic field 
with a nonlinear medium is considered. The three nonlinear coupled Heisenberg equations 
of motion are solved under the short-time approximation. The characteristic function for the 
normal ordering rule of association is evaluated. This function is then used to obtain the 
time dependence of the density operator. Assuming that the initial state of the system is a 
coherent state, explicit expressions for the diagonal coherent state representation of the 
reduced density operators for the pump as well as for the signal mode are obtained. For the 
pump mode, the initially coherent state remains coherent, whereas for the signal mode the 
diagonal coherent state representation is found to be a gaussian distribution whose variance 
is proportional to the average number of photons initially present in the pump mode. 

1. Introduction 

Oscillations of a system with time-varying parameters have been known for a long time 
(Rayleigh 1883) and are commonly called parametric oscillations. These oscillations 
have played a central role in several physical phenomena of interest which include 
frequency conversion in nonlinear media, coherent Raman and Brillouin scattering, 
spontaneous and stimulated emissions of radiation, super-radiance, etc. A simple 
quantum-mechanical model for parametric oscillations was first suggested by Louisell 
et a1 (1961). Based on this model a detailed study of the quantum statistics has been 
carried out (Mollow and Glauber 1967, Graham and Haken 1968, Tucker and Walls 
1969a, b) under the parametric approximation. This approximation consists of assuming 
the pump mode to be quite intense so that the average number of photons in this mode 
can be considered as constant. However, it is observed in this case that the average 
number of photons in the signal as well as in the idler mode grows exponentially with 
time. For this reason, the model is not very satisfactory. Recently Tucker and Walls 
(1969a,b) have suggested a parametric interaction where the interaction hamiltonian 
is trilinear and reduces under the parametric approximation to the bilinear hamiltonian 
as suggested by Louisell et a1 (1961). The Heisenberg equations of motion obtained 
using this hamiltonian are coupled nonlinear equations, and have not been solved 
exactly. However, using the fact that the free and the interaction parts of the hamiltonian 
commutewith eachother, Walls and Barakat (1970)carried out simultaneous diagonaliza- 
tion of the two parts numerically. They found that the number of photons in the signal 
or the idler mode follows an almost periodic variation. 

In the present investigation we solve the three nonlinear coupled equations of motion 
under the short-time approximation. Under this approximation, we factor out the har- 
monic time variation of the annihilation operator of each mode and expand the remaining 
slowly-varying part in a Taylor series retaining terms only up to those quadratic in time. 
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The calculations are thus valid if the time for which the interaction among different 
modes is on is sufficiently small. The solutions are then used to obtain the average and 
the variance of the number of photons in different modes. The time evolution of the 
reduced density operators for different modes is also considered. In particular we find 
that if the initial state of the system is a coherent state, the reduced diagonal coherent 
state representation of the signal mode is a gaussian distribution whereas the reduced 
state of the pump mode remains coherent. The calculations have not been carried out 
separately for the idler mode. This is because the hamiltonian is completely symmetric 
in the signal and the idler modes, and therefore the results for the idler mode are obtained 
by simply interchanging the idler and the signal mode parameters. We also find the 
diagonal coherent state representation for the combined signal and the idler modes. 
It is found that the two modes behave independently. 

2. The trilinear model hamiltonian 

We consider the model hamiltonian of Tucker and Walls (1969a,b). Assuming that there 
are only three modes interacting with each other, we write the hamiltonian in the form? 

where 

t i 0  h[oadt(f)a(t) + wbbt(f)6(f)+ w~i?~(f)e( t ) ]  

and 

A, = hk[at(t)b(t)i?(t) + a(t)b+(t)i't(r)]. 

The coupling constant k is taken to be real and the energy conserving condition 
(2.3) 

is assumed to hold. The three modes are labelled by the subscripts a, b and c. The 
annihilation and creation operators ii, at, b,bt and i?, Ct satisfy the commutation relations 

[a, a t ]  = [6,b+] = [i',i't] = 1, 

[a, 61 = [a, i'] = [b ,  i?] = [a, bt] = [b ,  i?+] = [ii, i't] = 0. 
(2.5) 

(2.6) 

The hamiltonian (2.1) describes the parametric amplification if one identifies a, b and c 
as the pump mode, the signal mode and the idler mode respectively. Various other 
phenomena of physical interest can be described by the same model hamiltonian by 
suitably identifying these modes. Thus, for example, if the signal and the idler mode 
frequencies are identical (ob = 0,) the hamiltonian describes second harmonic genera- 
tion (Walls and Tindle 1972). If, on the other hand, we identify 'a' as the idler mode, 
'b' as the signal mode and 'c' as the pump mode, the hamiltonian (2.1) will describe 
frequency conversion (Tucker and Walls 1969a, b). 

The hamiltonian describing processes such as spontaneous emission, stimulated 
emission, super-radiance, etc, in which we study the problem of emission of radiation 

t For the sake of clarity, all operators are indicated by a circumflex. 
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from a system oftwo-level atoms, could also be transformed in the form (2.1) by represent- 
ing angular momentum operators in terms of boson operators (Schwinger 1965). The 
two hamiltonians become formally identical by taking the pump mode as the state 
corresponding to  the upper atomic level, the signal mode as the state corresponding 
to the lower atomic level and the idler mode corresponding to the emitted photon 
(Bonifacio and Preparata 1970). 

3. Equations of motion 

We consider now the dynamics of the system described by the model hamiltonian (2.1); 
namely 

fi = h[o,b t(t)d(t) + o b 6  t(t)6(t) f a,'? ' ( t)2(t)]  + hk[d '( t)b(t)e(t) + b(t)b ' ( t )2  t(f)]. (3.1) 

The Heisenberg equation of motion for any operator e, which does not depend on time 
explicitly, is given by 

Using equations (3.2) and (3. l), we obtain the following nonlinear coupled equations for 
the annihilation operators d( t ) ,  6( t )  and e ( [ ) :  

d2(t) 
dt 

i- = wc2(t) + kb(t)b+(t). 

(3.4) 

(3.5) 

If we denote the number operators ;it(t)6(t), bt(t)b(t) and t t( t)2(t)  by No([), Rb(t) and R,(t) 
respectively, we may readily verify that 

d 
dt 
-[[A,(t)+[A&)] = 0, 

(3.7) 

Thus we find that R,(t) + Rb(t), R,(t) + Rc(t) and Rb(t) - l?,(t) are constants of the motion. 
These Manley-Rowe relations (Louise11 1960) are simultaneously satisfied if we require 
that for every photon that is annihilated from mode A ,  there is created one photon each 
in mode E and C. 



610 G P Agrawal and C L Mehta 

Let us introduce the slowly-varying operators A(t), 8(t) and e(t) defined by the rela- 

(3.9) 
(3.10) 

(3.1 1) 

From equations (3.3H3.5) and (3.9H3.11), we find that the operatorsA(t), 8(t) and C(t )  
satisfy the following equations : 

tions 
a(t) = Act) exp( - iWat), 

6(t) = B(t) exp( - iobt), 

?( t )  = C(t) exp( - ioct). 

. d&t) 
dt  

1- = kA(t)&(t), 

. dC(t) 
dt  

1- = kA(t)BT(t). 

(3.12) 

(3.13) 

(3.14) 

As remarked earlier, equations (3.12H3.14) may be used to describe parametric as well 
as other radiation processes by suitably identifying the various modes. In what follows, 
we are considering the parametric amplification by identifying A as the pump mode, B 
as the signal mode and Cas  the idler mode. 

4. The short-time approximation 

Let us assume that the time period for which the interaction is present is sufficiently 
small, so that we may expand each of the annihilation operators Act), 8(t) and C(t) in a 
Taylor series and retain terms only up to those quadratic in time. This is justified since 
the rapid exponential time variation of the operators a(t), b(t) and ?(t)  is already factored 
out in equations (3.9H3.11). We therefore write 

A(t) = A, + tA; +it2&, (4.1) 
B(t )  = 8, + t8; ++t%g, (4.2) 

C(t) = C0+tC;++t2Cg, (4.3) 
where the subscript 0 indicates the values at the initial time t = 0. Substituting these 
equation; in (3.12)-(3.14) and equating coefficients of the various powers oft ,  we obtain 
the following relations : 

Act) = A, - iktS,C, - +k2t2Ao(B,B& + CiC,), 
B(t )  = 8, - iktA,C& ++k2t28 , (A&A,  - C&Co), 

(4.4) 

(4.5) 

(4.6) 
Relations (4.4)-(4.6) may be used to evaluate the time dependence of the average 

C(t) = CO - iktA,B& + tk2t2CO(A&A0 - S@,). 

number of photons in different modes. Since R,(t) = at(t)d(t) = At(r)A(t), we find that 

R,(t) = R,, -k2t2R,o(Rbo +R,o + 1) + k 2 t 2 ~ b , ~ , , - i k t ( ~ 6 ~ 0 ~ 0  - AoB&e&), 

Rc( t )  = R c O  + k2t2R,0(RbO + + 1) - k 2 t 2 R b O R c 0  + ikt(A@oeo - A^O8$c&). 

(4.7) 

(4.8) 

(4.9) 

R b ( t )  = f i b 0  + k2tzf?,0(Rb0 + RCo + 1)- kZt2flbORc0 + ikt(A&B0e, -Aos&e&), 



Dynamics of parametric  processes 61 1 

The Manley-Rowe relations (3.6H3.8) are of course obviously satisfied. Let n,,  nb and n, 
be the average number of photons present initially in different modes. The average 
number of photons and the variance at any later time are then given by 

(4.10) 

(4.1 1 )  

fi,(t) = ( n , ,  n b ,  ncIflp(t)Ina, nbr tic>, 

( A n i )  = ( n , ,  nb,  n,lfl:(t)ln,, nb, n,) -[fi,(t)I2: p = a, b, C. 

We thus find on using (4.7)-(4.9) that 

&(t) = n,-k2t2na(nb+nc+ 1)+k2t2nbn, ,  

i b ( t )  = nb + k2t2n,(nb + n, + 1) - k2t2nbn,,  

ii,(t) = n,+k2t2na(nb+nc+ 1)- k2t2nbn, 

( A n : )  = ( A n t )  = ( A n f )  
and 

= [2n,nbn,+n,(nb+nc+ 1)+ nbn,]k2t2 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

One may further verify that 

( A n b A n c )  = - ( A n a  An,)  = - ( A n a A n b )  = ( A n : ) .  (4.16) 

If initially there are no photons present in the idler mode (n,  = 0), we find that 

fi,(t) = n,-k2t2n,(nb+ l) ,  (4.17) 

fib@) = nb + k2t2na(n, + l), 

&(t) = k2t2na(n,+ 1) 

and 
( A n : )  = k2t2n,(nb+ 1). 

(4.18) 

(4.19) 

(4.20) 

It may be of some interest to note that the fluctuations in the number of photons in 
either mode even when both nb and n, are zero correspond to vacuum fluctuations and 
are a purely quantum-mechanical effect. 

5. Time variation of the density operator 

In $5 3 and 4, we used the Heisenberg picture and obtained the time variation of the 
respective operators. In order to study the statistics of parametric processes, we use in 
this section the Schrodinger picture and obtain the time evolution of the density opera- 
tor. We shall in particular use the diagonal coherent state representation of the density 
operator (Sudarshan 1963, Glauber 1963, Mehta 1967) 

P(t)  = $ 4 ~  t)la>(al d2a, (5.1) 
where [E) is the normalized eigenstate of the annihilation operator d with complex 
eigenvalue a, 

;la) = ala);  (aid+ = a*(al (5.2) 

d2a = dxdy,  a = x + i y  (x, y are real). (5.3) 
and 
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The phase space distribution function 4(a, t )  is the inverse Fourier transform of the 
characteristic function for the normal ordering (Mehta and Sudarshan 1965, Glauber 
1966) defined by the relation 

(5.4) x(v, t )  = Tr[B(t) exp(vdt) exp( -q*d)I. 

For, from (5.1) and (5.4) one finds that 

and therefore 

We have written equations (5.1H5.6) assuming that only one mode of oscillation is 
present. The formulation may readily be extended to a large number of modes. How- 
ever, if we are interested in carrying out measurements only over a particular mode p, 
we may then define the reduced density operator for that mode 

p ,  = Tr,p (5.7) 

where Tr, denotes trace over all modes except the mode p. In what follows, we obtain 
the time evolution of the reduced density operators for the signal as well as for the pump 
mode. Since the interaction is symmetric in the signal and the idler modes, the density 
operator for the idler mode will behave in a manner identical with that for the signal 
mode. For this reason we shall not consider the case of the idler mode separately. 

6. Diagonal coherent state representation for the signal mode 

The normally ordered characteristic function for the signal mode may be written, using 
(5.4), in the form 

Xb(q, t ,  = Tr[Pb(t)  exp(v]6?l) exp(-v*60)l. (6.1) 

To evaluate the expectation value on the right-hand side, we may use the Heisenberg 
picture and rewrite (6.1) in the form 

xb(q, t, = T r [ P O  exp(vbt(t)) exp(-?*b(t))l, (6.2) 
where Po is the initial total density operator. Using equations (3.9H3.11) and (43, we 
find that 

(6.3) 

We evaluate the characteristic function in the case when the initial state of the system 
is a coherent state in all the three modes, ie, when 

Po  = I a o ~ P o ~ Y o > ( ~ o ~ B o . r o l .  (6.4) 

We substitute (6.3) and (6.4) in (6.2). The trace evaluation is simplified if we could 
express the corresponding expression in a normally ordered form. If we retain terms 
only up to  first order in k t ,  we readily find that 

6(t)  = [h0 - ikt8,i.A + +k2t2b0(d,Jdo -@,)I e-iwbf. 

x,,(q, t )  = exp[q(/?t + iktagy,) eiwbf] exp[ - VI*(/?$ - ikta,y,*) (6.5) 
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From (5.6), we therefore obtain the following expression for the reduced diagonal co- 
herent state representation of the signal mode : 

(6.6) ($b(P,  t )  = 8(')(8- p ( t ) )  6[Re(b - p(t))16[rm(P - p(t))l, 
where 

p(t) = (Po-iktol0y$) e-iubf (6.7) 

is the expectation value of b(t) and CY') denotes the two-dimensional Dirac delta function 
as indicated?. 

We thus find that, correct to the first order in k t ,  the reduced density operator at 
time t for the signal mode corresponds to the coherent state with eigenvalue P(t) given 
by (6.7). 

The reduced density operator correct to the second order in kt  may also be evaluated. 
For this purpose we expand exp(qbt(t)) exp( -?*b(t)) in powers of kt  retaining terms only 
up to k2 tZ  and obtain 

exP(rl" exp( - rl*m 
exp(qb& eiwbr) { 1 + ikt(q eiwbf@eO + q* e- i'Ub'StLi 0 0 )  

+ikZtz[q  ei"Jbrbt(dtd - Et2 ) - q*e-'Wb'(d@, - 0 0  )b 0 0 0 0  0 0  

2 2 iObfd~z~~  - q * 2  e - Z i W b f  co A t 2 a,] A 2  - k2tZl?l Z d ~ t o d o E ~ }  -? e 

x exp(- ?*bo e-'"bf). (6.8) 

The right-hand side of (6.8) is already in the normally ordered form except for the last 
term containing d$,d0E~ which can be rewritten as d ~ E ~ d o E o  + dLdo.  We therefore obtain 
after some simplification, 

e x P ( ? m  exp( - q*%t)) 
= : exp{q[b,J + iktd@, + ~ k 2 t Z & d ~ d o  - E@,)] eiwbf 

- q*[bo - iktdoi.6 +$k2tz60(d,@o - 2 & ~ ~ ) ]  e-iobf - IqjZk2t2d~do} : (6.9) 
where the colons denote, as usual, that the expression in between is to be taken in a 
normally ordered form, ie, all creation operators are to be put to the left of all annihila- 
tion operators. We have expressed (6.9) in an exponential form in order to obtain a 
simplified expression for the diagonal coherent state representation. However, it is 
understood that the results are valid only up to  the second order in kt. From equations 
(6.2), (6.4) and (6.9), we therefore obtain 

X b ( l )  = exp(?p*(t)-q*8(t)- ~ ? ~ 2 k z f 2 ~ C r O ~ z )  (6.10) 

where p ( t )  is now given by 

P(t) = [Po -iktcc,y; + ~ k 2 t Z ~ O ( ~ ~ 0 ~ 2  - lyo12)] e-iwb*. (6.11) 

t I f  the solution (6.3) for b(t) is taken to the first order in k t  then an expression for +*(b. t )  may be obtained 
without further approximation yielding 

This may appear to be different from that given by (6.6). However, various averages such as moments, etc, 
will be identical correct to the first order in kt, whether we use (6.6) or the above expression. In this respect 
they are identical. 
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The reduced diagonal coherent state representation obtained by using (5.6) is therefore 
given by? 

(6.12) 

(6.13) 

Jao12 is the average number of photons initially present in the pump mode. 
We thus find that correct to the second order in kt, the diagonal coherent state rep- 

resentation for the signal mode is a complex gaussian distribution with mean P(t)  and 
variance a2(t). The variance is thus large (small) if the average number of photons 
initially present in the pump mode is large (small). Large values of ltlo12 correspond to 
the case of the parametric approximation. The distribution (6.12) tends to (6.6) for 
smaller values of kt, as it should. 

Finally it may be noted that if the initial state is not a coherent state, but is given by 

PO = s 40(a0 ,  B O ,  Y O ) I ~ ~ ,  B O ,  y o )  ( M O ,  P O ,  YOI  d2Mo d2Po d2yo (6.14) 

then the reduced diagonal coherent state density operator for the signal mode at time t 
will be given by 

7. Diagonal coherent state representation for the pump mode 

Let us next consider the reduced density operator for the pump mode. The normally 
ordered characteristic function for the pump mode may be written in the form (cf 
equation (6.2)) 

(7.1) L A 5 7  t )  = - W O  exp(5") exp(-5*W)l, 

d ( t )  = [do-ikt6020-$k2t2do(6,J60+2,J20+ l)] e-'"". 

where d ( t )  is obtained from equations (3.10)-(3.12) and (4.4), 

(7.2) 
If we substitute (7.2) in the expression exp(5dt(t)) exp( - t*ii(t)), expand in powers of kt  
and retain terms up to k2t2, we obtain, after some straightforward calculations and 
rearrangement of terms, the following expression : 

e x p ( 5 W )  exp( - t * W  
= : exp{ t e'"J[d,J + ikt6,JfX -+k2 t2c i~ (6&6,  + ?A?, + I)] 

- 5 *  e ~ ' ~ ~ ' [ ~ , - i k t 6 , ~ , - $ k 2 t 2 ~ , ~ 6 ~ 6 , + ~ , J ~ , +  I)]} : .  (7.3) 
t Had we used expression (6.8). &(B. t )  would have contained a Dirac delta function and its derivatives. 
However, again, up to second order in kt we would obtain identical results for various averages (cf footnote on 
p 613). 
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We now substitute (7.3) and (6.4) in (7.1) and find that the normally ordered charac- 
teristic function for the pump mode is given by 

(7.4) Z A t ,  t )  = exp(tE*(t) - t *W 

~ ( t )  = [ao -iktP,,y, -$k2t2ao(lPo12 + lyo12 + ~)]e-"n'. 

f$&Z, t )  = P y a  - E(t ) ) .  

where E ( t )  is, as before, the expectation value of a(t) 

(7.5) 

The reduced density operator for the pump mode is therefore given by 

(7.6) 

I t  is to be noted that even to the second order in k t ,  the reduced density operator for the 
pump mode at time t ,  corresponds to the coherent state with eigenvalue E(t ) .  Of course 
if the initial state is not a coherent state (6.4), but is given by (6.14), the reduced diagonal 
coherent state representation for the pump mode would be given by 

4 h ,  t )  = 6'2'(a -W) f$O(aO,  B O ,  y o )  d2ao d2Bo d2yo. (7.7) 

In the above consideration we have obtained the reduced density operators for the 
various modes. It is also possible to obtain the time evolution ofthe total density operator 
of the system in the diagonal coherent state representation. The mathematics involved 
is, however, quite cumbersome. The reduced density operator for the combined signal 
and idler can however be readily evaluated. Assuming again that the initial state of the 
system is a coherent state lao, Bo ,  y o )  ( ao ,  B o ,  y o [ ,  we find in this case that the charac- 
teristic function for the normal ordering is given by 

Xbc(% t, t )  = Tr[p exP(V6 t(t) + t(t)) exP( - ~ * & t )  - 5*e(t))] 

= exp[vP*(t) + <.J*(t) - V * P W  - <*m - o2(t)(ltI2 + lr1I2)1 (7.8) 

(7.9) 

where 

P(t) = [ jo- ik ta0y~ +fk2t2jo(lao12 -lyoI2)] e-iwbt 

?( t )  = [ y o  -iktaoP$ +)k2t2yo(lao12- Iflo12)] e- iWct (7.10) 

(7.11) 

Hence the reduced diagonal coherent state representation of the combined signal and 
idler modes is given by 

(7.12) 

I t  may be noted that f $ b c ( P ,  y, t )  = c $ ~ ( P ,  t)4c(y, t )  ie, that the two modes are uncoupled. 
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